A SIMPLE SYNTHESIS OF α , β -unsaturated aldehydes by 1,3-carbonyl transposition through one carbon homologation

Ratna Dasgupta and Usha Ranjan Ghatak*

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadaypur, Calcutta - 700 032, India

Summary: α, β -Unsaturated aldehydes are conveniently prepared from ketones through their $\overline{\beta}$ -diethoxymethyl derivatives by sodium borohydride reduction followed by acid-catalysed rearrangement of the resulting diacetal carbinols.

The homologation of carbocyclic 1 or aromatic conjugated cyclic and acyclic 2 ketones ($\underline{\underline{A}}$), having an active methylene group, to the α,β -unsaturated aldehydes ($\underline{\underline{C}}$) has been achieved 1,2 through acid-catalysed rearrangement of the respective 2-(alkylthio)-methylene carbinols ($\underline{\underline{B}}$), derived from the ketones in several steps. These methods, however, require strong basic reagents for introduction of the functionalised β -carbon residue into the ketones. We wish to report here an alternate and simple approach to the transformations of cyclic and acyclic ketones having the general structure ($\underline{\underline{A}}$) to the respective α,β -unsaturated aldehydes ($\underline{\underline{C}}$) through the easily accessible β -keto-acetals ($\underline{\underline{D}}$) under mild reaction conditions 3,4 , which appears to offer a considerable promise as a general synthetic procedure.

$$(\underline{\underline{A}}) : X = H \qquad (\underline{\underline{B}}) : X = SMe \text{ or } SBu^{n} \qquad (\underline{\underline{C}})$$

$$(\underline{\underline{D}}) : X = CH(OEt)_{2} \qquad (\underline{\underline{E}}) : X = OEt$$

As a typical example, conversion of the tetralone $(\underline{\underline{1}\underline{d}})^5$ into the dihydronaphthaldehyde $(\underline{\underline{4}\underline{d}})^{6,7}$, a key intermediate in the synthesis of anthracyclines 6,7 , $\underline{\underline{v}}$ the β -ketoacetal $(\underline{\underline{2}\underline{d}})$ and the carbinol $(\underline{\underline{3}\underline{d}})$, is shown here.

The reaction of the tetralone $(\underline{\underline{1}}\underline{\underline{d}})$ with diethoxycarbonium fluoroborate \angle prepared in situ from BF $_3$.Et $_2$ O and HC (OEt) $_3$ $_7$ in the presence of N,N-diisopropylethylamine in CH $_2$ Cl $_2$ at -78°C (10 min) followed by -20 to -10°C for 2 hr according to Mock and Tsou $_3$, afforded the β -ketoacetal ($\underline{\underline{2}}\underline{\underline{d}}$) as a dark red viscous oil in 95% yield. This relatively unstable intermediate was characterised by the spectral data; IR (neat) 1660, 1610 cm $_3$; $_4$ H NMR (CCl $_4$) $_4$ 0 0.93-1.3 (m,6H), 1.87-3.66 (m,9H), 3.73 (s,6H,2-OCH $_3$), 4.83 (d,1H), 6.46-6.9 (dd,2H,ArH). Reduction of crude ($\underline{\underline{2}}\underline{\underline{d}}$) with an excess of NaBH $_4$ in methanol to the carbinol ($\underline{\underline{3}}\underline{\underline{d}}$) followed by decomposition of the reaction mixture with an excess of ice-cold aq-HCl (6N) followed by stirring at room temperature for 2 hr and purification of the resulting product (extracted with Et $_2$ O) by short-path filtration through a silica-gel column afforded the known aldehyde ($\underline{4}\underline{\underline{d}}$), m.p. 90-92°C (reported $_6$, $_7$ 0 m.p. 91-92°C) in 80% yield. Possibly, the acid-catalysed transformation of the carbinol-acetal ($\underline{\underline{3}}\underline{\underline{d}}$) proceeds through the rearrangement of an intermediate such as ($\underline{\underline{B}}$), similar to the sulphur analogue ($\underline{\underline{B}}$) 1, 2.

The sequence was demonstrated on several other tetralones $(\underline{1}\underline{a}\underline{=}\underline{c})$, indanones $(\underline{4}\underline{a}\underline{=}\underline{d})$ and benzosuberone $(\underline{7})$ to the respective α , β -unsaturated aldehydes $(\underline{3}\underline{a}\underline{=}\underline{c})$, $(\underline{6}\underline{a}\underline{=}\underline{d})$ and $(\underline{9})$ in good to excellent yields (entries 1-8 in Table). The ketoacetals $(\underline{1}\underline{4}\underline{a})$ and $(\underline{1}\underline{4}\underline{b})$ derived from the respective arylmethyl ketones $(\underline{1}\underline{3}\underline{a})$ and $(\underline{1}\underline{3}\underline{b})$ gave the E-isomers $(\underline{1}\underline{5}\underline{a})$ and $(\underline{1}\underline{5}\underline{b})$ exclusively, as appeared from the ¹H NMR spectra (entries 11 and 12 in Table). The tetrahydro-4-oxo-benzo $(\underline{5}\underline{b})$ thiophene $(\underline{1}\underline{0})$ also yielded the previously unknown $(\underline{5}\underline{a})$ 0, $(\underline{5}\underline{b})$ 1 in excellent yield (entry 10 in the Table).

Table. Transformations of the ketones to $\alpha,\beta\text{-unsaturated}$ aldehydes.

Entry	Starting Ketone	e β-Ketoacetal ^a	α,β-Unsaturated Aldehyde	Yield ^b (%)	m.p.
R ₂ ((R ₁ 0	$\begin{array}{c} R_2 \\ R_3 \\ \hline \\ R_4 \\ (\underline{2}) \end{array} $ CH(OEt) ₂	$\begin{array}{c} R_{2} \\ R_{3} \\ R_{4} \\ \end{array} \begin{array}{c} R_{1} \\ R_{4} \\ \end{array} \begin{array}{c} CHO \\ \end{array}$		
1	$\frac{a}{1}$, $R_1 = R_2 = R_3 = R_4 = H$	$\underline{a}, R_1 = R_2 = R_3 = R_4 = H$	$\underline{a}, R_1 = R_2 = R_3 = R_4 = H$	92	Oil
2	$\frac{b}{R_1}$, $R_1 = R_2 = R_4 = H$ $R_3 = OMe$	$\frac{b}{R_1} = R_2 = R_4 = H$ $R_3 = OMe$	$\frac{b}{R_1}$, $R_1 = R_2 = R_4 = H$ $R_3 = OMe$		48-49°C (1it. ¹¹ m.p.49°C)
3	c,R ₁ =R ₃ =R ₄ =H R ₂ =OMe	<u>c</u> ,R ₁ =R ₃ =R ₄ =H R ₂ =OMe	<u>c</u> ,R ₁ =R ₃ =R ₄ =H R ₂ =OMe		oil (lit. ¹¹ b.p. 125-130 ⁰ C/2mm Hg
4	d,R ₂ =R ₃ =H, R ₁ =R ₄ =OMe	$\frac{d}{R_2} = R_3 = H$, $R_1 = R_4 = OMe$	$\underline{d}, R_2 = R_3 = H,$ $R_1 = R_4 = OMe$	80	91-92°C (lit ⁶ m.p.91-92°C)
R ₂		CH(OEt) ₂	. R ₂ СНО		
5	, (<u>4</u>) <u>a</u> , R ₁ =R ₂ =H	$\underline{\mathbf{a}}, \mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	$\underline{\mathbf{a}}, \mathbf{R}_1 = \mathbf{R}_2 = \mathbf{H}$	50	0i1
6	$\underline{b}, R_1 = Me, R_2 = H$	$\underline{b}, R_1 = Me, R_2 = H$	$\underline{b}, R_1 = Me, R_2 = H$	75	80°C
7	$\underline{c}, R_1 = OMe, R_2 = H$	\underline{c} , R_1 =OMe, R_2 =H	$\underline{c}, R_1 = OMe, R_2 = H$	79	98 ⁰ C
8	$\underline{d}, R_1 = H, R_2 = OMe$	\underline{d} , R_1 =H, R_2 =OMe	$\underline{d}, R_1 = H, R_2 = OMe$	82	64 ^o c
9		CH(OE1)	2 CHO	72	0i1
10		OEt) ₂ CH	SICHO	81	low melting solid
R ₂	1()1 °	$\begin{array}{c} R_2 \\ R_1 \\ \hline \end{array} \begin{array}{c} O \\ OEt \\ OEt \end{array}$	R ₁	0	0
11	<u>a</u> ,R ₁ =OMe,R ₂ =H	$\underline{a}, R_1 = OMe, R_2 = H$	(<u>15</u>) <u>a</u> ,R ₁ =OMe,R ₂ =H	62	59-60°C (lit ¹² m.p.59°C)
	$\underline{b}, R_1 = H, R_2 = OMe$	$\underline{b}, R_1 = H, R_2 = OMe$	$\underline{b}, R_1 = H, R_2 = OMe$	67	oil

Characterised by IR and H NMR spectra; bYields refer to the isolated pure compounds fully characterised by UV,IR, H NMR (at 200 MHz) and elemental analyses; cWe thank Dr.S.Ghosh and Miss. S. Saha for a generous gift of this compound; oxidation to the corresponding carboxylic acid in air; eWe thank Dr.A.De and Mrs.S.Dutta for a generous gift of this compound.

The preliminary results indicated that the sequence of reactions developed for the aromatic conjugated ketones are also useful for the transformation of cyclohexanone ($\underline{\underline{16}}$) and cyclopentanone ($\underline{\underline{17}}$) to the respective α , β -unsaturated aldehydes ($\underline{\underline{20}}$) and ($\underline{\underline{21}}$) in ca. 50% overall yield from the ketones \underline{via} the β -ketoacetals ($\underline{\underline{18}}$) $\underline{^3}$ and ($\underline{\underline{19}}$) $\underline{^3}$.

The simplicity and mild reaction conditions of our method and the ease with which it can be applied to the preparation of α , β -unsaturated aldehydes by one carbon homologation with 1,3-carbonyl transposition suggests that it will be the method of choice for such synthetic operation⁹.

The easily accessible $\beta\text{-ketoacetals}$ ($\underline{\underline{D}}$) are also useful intermediates for the synthesis of substituted $\alpha,\beta\text{-unsaturated}$ aldehydes and benzoannelated derivatives 10 through their reactions with organometallic reagents and these aspects will be reported in due course.

Acknowledgements

Financial support from the SERC/DST (New Delhi) under Grant No.23(3p-8)/81-STP/II is gratefully acknowledged.

REFERENCES AND NOTES

- 1. (a) R.E. Ireland and J.A. Marshall, J.Org. Chem., 27, 1620 (1962);
 - (b) R.F. Church and R.E. Ireland, Tetrahedron Lett., 495 (1961);
 - (c) S. Akiyama, S. Nakatsuji, and T. Hamamura, Ibid., 2809 (1979);
 - (d) J.A. Marshall and P.C. Johnson, J. Org. Chem., 35, 193 (1970);
 - (e) T. Nishio and Y. Omoto, Chemistry Lett., 365 (1979).
- 2. B.Myrboh, H. Ila, and H. Junjappa, J. Org. Chem., 48, 5327 (1983).
- 3: W.L. Mock and H.R. Tsou, J. Org. Chem., 46, 2557 (1981).
- 4. For other methods see: (a) O. Takazawa and T. Mukaiyama, Chemistry Lett., 1307 (1982);
 - (b) T. Mukaiyama and M. Hayashi, Chemistry Lett., 15 (1974).
- 5. J.A. Moore and M. Rahm., J. Org. Chem., 26, 1109 (1961).
- 6 M.P. Reddy and G.S. Krishna Rao, Tetrahedron Lett., 22, 3549 (1981).
- 7. A.V.Rama Rao, J.S.Yadav, K.B.Reddy, and A.R.Mehendale, J.Chem.Soc.Chem.Commun., 453 (1984); and the references cited therein.
- Attempted formylation of (<u>10</u>) by Vilsmeier method gave either a mixture of products / D.T. Drewry and R.M. Scrowston, J. Chem. Soc., (<u>c</u>), 2750 (1969) _7.
- 9. For cyclohexenone annulation by similar method see: R. Dasgupta, B. Ranu, and U.R.Ghatak, Indian J.Chem., 22B, 619 (1983).
- (a) M.A. Tius, Tetrahedron Lett., 22, 3335 (1981); (b) M.A. Tius and S. Ali, J. Org. Chem., 47, 3163 (1982); (c) M.A. Tius and S. Savariar, Synthesis, 467 (1983); (d) M.A. Tius and A. Thurkauf, J. Org. Chem., 48, 3839 (1983).
- 11. P.A. Reddy and G.S. Krishna Rao, Indian J. Chem., 20B, 100 (1981).
- 12. A. Horeau, Bull. Soc. Chim. Fr., 414 (1948).

(Received in UK 15 January 1984)